\(\int \frac {\cos ^4(c+d x)}{(a+a \cos (c+d x))^6} \, dx\) [94]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [A] (verification not implemented)
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 21, antiderivative size = 176 \[ \int \frac {\cos ^4(c+d x)}{(a+a \cos (c+d x))^6} \, dx=-\frac {241 \sin (c+d x)}{1155 a^6 d (1+\cos (c+d x))^3}+\frac {61 \sin (c+d x)}{1155 a^6 d (1+\cos (c+d x))^2}+\frac {61 \sin (c+d x)}{1155 a^6 d (1+\cos (c+d x))}-\frac {\cos ^3(c+d x) \sin (c+d x)}{11 d (a+a \cos (c+d x))^6}-\frac {4 \cos ^2(c+d x) \sin (c+d x)}{33 a d (a+a \cos (c+d x))^5}+\frac {9 \sin (c+d x)}{77 a^2 d (a+a \cos (c+d x))^4} \]

[Out]

-241/1155*sin(d*x+c)/a^6/d/(1+cos(d*x+c))^3+61/1155*sin(d*x+c)/a^6/d/(1+cos(d*x+c))^2+61/1155*sin(d*x+c)/a^6/d
/(1+cos(d*x+c))-1/11*cos(d*x+c)^3*sin(d*x+c)/d/(a+a*cos(d*x+c))^6-4/33*cos(d*x+c)^2*sin(d*x+c)/a/d/(a+a*cos(d*
x+c))^5+9/77*sin(d*x+c)/a^2/d/(a+a*cos(d*x+c))^4

Rubi [A] (verified)

Time = 0.42 (sec) , antiderivative size = 176, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {2844, 3056, 3047, 3098, 2829, 2729, 2727} \[ \int \frac {\cos ^4(c+d x)}{(a+a \cos (c+d x))^6} \, dx=\frac {61 \sin (c+d x)}{1155 a^6 d (\cos (c+d x)+1)}+\frac {61 \sin (c+d x)}{1155 a^6 d (\cos (c+d x)+1)^2}-\frac {241 \sin (c+d x)}{1155 a^6 d (\cos (c+d x)+1)^3}+\frac {9 \sin (c+d x)}{77 a^2 d (a \cos (c+d x)+a)^4}-\frac {\sin (c+d x) \cos ^3(c+d x)}{11 d (a \cos (c+d x)+a)^6}-\frac {4 \sin (c+d x) \cos ^2(c+d x)}{33 a d (a \cos (c+d x)+a)^5} \]

[In]

Int[Cos[c + d*x]^4/(a + a*Cos[c + d*x])^6,x]

[Out]

(-241*Sin[c + d*x])/(1155*a^6*d*(1 + Cos[c + d*x])^3) + (61*Sin[c + d*x])/(1155*a^6*d*(1 + Cos[c + d*x])^2) +
(61*Sin[c + d*x])/(1155*a^6*d*(1 + Cos[c + d*x])) - (Cos[c + d*x]^3*Sin[c + d*x])/(11*d*(a + a*Cos[c + d*x])^6
) - (4*Cos[c + d*x]^2*Sin[c + d*x])/(33*a*d*(a + a*Cos[c + d*x])^5) + (9*Sin[c + d*x])/(77*a^2*d*(a + a*Cos[c
+ d*x])^4)

Rule 2727

Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> Simp[-Cos[c + d*x]/(d*(b + a*Sin[c + d*x])), x]
/; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 2729

Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[b*Cos[c + d*x]*((a + b*Sin[c + d*x])^n/(a*d
*(2*n + 1))), x] + Dist[(n + 1)/(a*(2*n + 1)), Int[(a + b*Sin[c + d*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d},
 x] && EqQ[a^2 - b^2, 0] && LtQ[n, -1] && IntegerQ[2*n]

Rule 2829

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(b*
c - a*d)*Cos[e + f*x]*((a + b*Sin[e + f*x])^m/(a*f*(2*m + 1))), x] + Dist[(a*d*m + b*c*(m + 1))/(a*b*(2*m + 1)
), Int[(a + b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 -
b^2, 0] && LtQ[m, -2^(-1)]

Rule 2844

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim
p[(b*c - a*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^(n - 1)/(a*f*(2*m + 1))), x] + Dist[1/
(a*b*(2*m + 1)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n - 2)*Simp[b*(c^2*(m + 1) + d^2*(n -
1)) + a*c*d*(m - n + 1) + d*(a*d*(m - n + 1) + b*c*(m + n))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e,
f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -1] && GtQ[n, 1] && (IntegersQ
[2*m, 2*n] || (IntegerQ[m] && EqQ[c, 0]))

Rule 3047

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(
e_.) + (f_.)*(x_)]), x_Symbol] :> Int[(a + b*Sin[e + f*x])^m*(A*c + (B*c + A*d)*Sin[e + f*x] + B*d*Sin[e + f*x
]^2), x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]

Rule 3056

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x]
)^n/(a*f*(2*m + 1))), x] - Dist[1/(a*b*(2*m + 1)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n -
1)*Simp[A*(a*d*n - b*c*(m + 1)) - B*(a*c*m + b*d*n) - d*(a*B*(m - n) + A*b*(m + n + 1))*Sin[e + f*x], x], x],
x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ
[m, -2^(-1)] && GtQ[n, 0] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c, 0])

Rule 3098

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_
.)*(x_)]^2), x_Symbol] :> Simp[(A*b - a*B + b*C)*Cos[e + f*x]*((a + b*Sin[e + f*x])^m/(a*f*(2*m + 1))), x] + D
ist[1/(a^2*(2*m + 1)), Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[a*A*(m + 1) + m*(b*B - a*C) + b*C*(2*m + 1)*Sin[e
 + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, B, C}, x] && LtQ[m, -1] && EqQ[a^2 - b^2, 0]

Rubi steps \begin{align*} \text {integral}& = -\frac {\cos ^3(c+d x) \sin (c+d x)}{11 d (a+a \cos (c+d x))^6}-\frac {\int \frac {\cos ^2(c+d x) (3 a-9 a \cos (c+d x))}{(a+a \cos (c+d x))^5} \, dx}{11 a^2} \\ & = -\frac {\cos ^3(c+d x) \sin (c+d x)}{11 d (a+a \cos (c+d x))^6}-\frac {4 \cos ^2(c+d x) \sin (c+d x)}{33 a d (a+a \cos (c+d x))^5}-\frac {\int \frac {\cos (c+d x) \left (24 a^2-57 a^2 \cos (c+d x)\right )}{(a+a \cos (c+d x))^4} \, dx}{99 a^4} \\ & = -\frac {\cos ^3(c+d x) \sin (c+d x)}{11 d (a+a \cos (c+d x))^6}-\frac {4 \cos ^2(c+d x) \sin (c+d x)}{33 a d (a+a \cos (c+d x))^5}-\frac {\int \frac {24 a^2 \cos (c+d x)-57 a^2 \cos ^2(c+d x)}{(a+a \cos (c+d x))^4} \, dx}{99 a^4} \\ & = -\frac {\cos ^3(c+d x) \sin (c+d x)}{11 d (a+a \cos (c+d x))^6}-\frac {4 \cos ^2(c+d x) \sin (c+d x)}{33 a d (a+a \cos (c+d x))^5}+\frac {9 \sin (c+d x)}{77 a^2 d (a+a \cos (c+d x))^4}+\frac {\int \frac {-324 a^3+399 a^3 \cos (c+d x)}{(a+a \cos (c+d x))^3} \, dx}{693 a^6} \\ & = -\frac {241 \sin (c+d x)}{1155 a^6 d (1+\cos (c+d x))^3}-\frac {\cos ^3(c+d x) \sin (c+d x)}{11 d (a+a \cos (c+d x))^6}-\frac {4 \cos ^2(c+d x) \sin (c+d x)}{33 a d (a+a \cos (c+d x))^5}+\frac {9 \sin (c+d x)}{77 a^2 d (a+a \cos (c+d x))^4}+\frac {61 \int \frac {1}{(a+a \cos (c+d x))^2} \, dx}{385 a^4} \\ & = -\frac {241 \sin (c+d x)}{1155 a^6 d (1+\cos (c+d x))^3}-\frac {\cos ^3(c+d x) \sin (c+d x)}{11 d (a+a \cos (c+d x))^6}-\frac {4 \cos ^2(c+d x) \sin (c+d x)}{33 a d (a+a \cos (c+d x))^5}+\frac {9 \sin (c+d x)}{77 a^2 d (a+a \cos (c+d x))^4}+\frac {61 \sin (c+d x)}{1155 d \left (a^3+a^3 \cos (c+d x)\right )^2}+\frac {61 \int \frac {1}{a+a \cos (c+d x)} \, dx}{1155 a^5} \\ & = -\frac {241 \sin (c+d x)}{1155 a^6 d (1+\cos (c+d x))^3}-\frac {\cos ^3(c+d x) \sin (c+d x)}{11 d (a+a \cos (c+d x))^6}-\frac {4 \cos ^2(c+d x) \sin (c+d x)}{33 a d (a+a \cos (c+d x))^5}+\frac {9 \sin (c+d x)}{77 a^2 d (a+a \cos (c+d x))^4}+\frac {61 \sin (c+d x)}{1155 d \left (a^3+a^3 \cos (c+d x)\right )^2}+\frac {61 \sin (c+d x)}{1155 d \left (a^6+a^6 \cos (c+d x)\right )} \\ \end{align*}

Mathematica [A] (verified)

Time = 5.08 (sec) , antiderivative size = 76, normalized size of antiderivative = 0.43 \[ \int \frac {\cos ^4(c+d x)}{(a+a \cos (c+d x))^6} \, dx=\frac {\left (16+96 \cos (c+d x)+248 \cos ^2(c+d x)+368 \cos ^3(c+d x)+366 \cos ^4(c+d x)+61 \cos ^5(c+d x)\right ) \sin (c+d x)}{1155 a^6 d (1+\cos (c+d x))^6} \]

[In]

Integrate[Cos[c + d*x]^4/(a + a*Cos[c + d*x])^6,x]

[Out]

((16 + 96*Cos[c + d*x] + 248*Cos[c + d*x]^2 + 368*Cos[c + d*x]^3 + 366*Cos[c + d*x]^4 + 61*Cos[c + d*x]^5)*Sin
[c + d*x])/(1155*a^6*d*(1 + Cos[c + d*x])^6)

Maple [A] (verified)

Time = 0.87 (sec) , antiderivative size = 84, normalized size of antiderivative = 0.48

method result size
derivativedivides \(\frac {\frac {\left (\tan ^{11}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{11}-\frac {\left (\tan ^{9}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{3}+\frac {2 \left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{7}+\frac {2 \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{5}-\left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{32 d \,a^{6}}\) \(84\)
default \(\frac {\frac {\left (\tan ^{11}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{11}-\frac {\left (\tan ^{9}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{3}+\frac {2 \left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{7}+\frac {2 \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{5}-\left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{32 d \,a^{6}}\) \(84\)
parallelrisch \(\frac {105 \left (\tan ^{11}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-385 \left (\tan ^{9}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+330 \left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+462 \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1155 \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1155 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{36960 a^{6} d}\) \(86\)
risch \(\frac {2 i \left (1155 \,{\mathrm e}^{9 i \left (d x +c \right )}+3465 \,{\mathrm e}^{8 i \left (d x +c \right )}+9240 \,{\mathrm e}^{7 i \left (d x +c \right )}+12936 \,{\mathrm e}^{6 i \left (d x +c \right )}+15246 \,{\mathrm e}^{5 i \left (d x +c \right )}+10890 \,{\mathrm e}^{4 i \left (d x +c \right )}+6600 \,{\mathrm e}^{3 i \left (d x +c \right )}+2200 \,{\mathrm e}^{2 i \left (d x +c \right )}+671 \,{\mathrm e}^{i \left (d x +c \right )}+61\right )}{1155 d \,a^{6} \left ({\mathrm e}^{i \left (d x +c \right )}+1\right )^{11}}\) \(124\)

[In]

int(cos(d*x+c)^4/(a+cos(d*x+c)*a)^6,x,method=_RETURNVERBOSE)

[Out]

1/32/d/a^6*(1/11*tan(1/2*d*x+1/2*c)^11-1/3*tan(1/2*d*x+1/2*c)^9+2/7*tan(1/2*d*x+1/2*c)^7+2/5*tan(1/2*d*x+1/2*c
)^5-tan(1/2*d*x+1/2*c)^3+tan(1/2*d*x+1/2*c))

Fricas [A] (verification not implemented)

none

Time = 0.25 (sec) , antiderivative size = 147, normalized size of antiderivative = 0.84 \[ \int \frac {\cos ^4(c+d x)}{(a+a \cos (c+d x))^6} \, dx=\frac {{\left (61 \, \cos \left (d x + c\right )^{5} + 366 \, \cos \left (d x + c\right )^{4} + 368 \, \cos \left (d x + c\right )^{3} + 248 \, \cos \left (d x + c\right )^{2} + 96 \, \cos \left (d x + c\right ) + 16\right )} \sin \left (d x + c\right )}{1155 \, {\left (a^{6} d \cos \left (d x + c\right )^{6} + 6 \, a^{6} d \cos \left (d x + c\right )^{5} + 15 \, a^{6} d \cos \left (d x + c\right )^{4} + 20 \, a^{6} d \cos \left (d x + c\right )^{3} + 15 \, a^{6} d \cos \left (d x + c\right )^{2} + 6 \, a^{6} d \cos \left (d x + c\right ) + a^{6} d\right )}} \]

[In]

integrate(cos(d*x+c)^4/(a+a*cos(d*x+c))^6,x, algorithm="fricas")

[Out]

1/1155*(61*cos(d*x + c)^5 + 366*cos(d*x + c)^4 + 368*cos(d*x + c)^3 + 248*cos(d*x + c)^2 + 96*cos(d*x + c) + 1
6)*sin(d*x + c)/(a^6*d*cos(d*x + c)^6 + 6*a^6*d*cos(d*x + c)^5 + 15*a^6*d*cos(d*x + c)^4 + 20*a^6*d*cos(d*x +
c)^3 + 15*a^6*d*cos(d*x + c)^2 + 6*a^6*d*cos(d*x + c) + a^6*d)

Sympy [A] (verification not implemented)

Time = 9.67 (sec) , antiderivative size = 124, normalized size of antiderivative = 0.70 \[ \int \frac {\cos ^4(c+d x)}{(a+a \cos (c+d x))^6} \, dx=\begin {cases} \frac {\tan ^{11}{\left (\frac {c}{2} + \frac {d x}{2} \right )}}{352 a^{6} d} - \frac {\tan ^{9}{\left (\frac {c}{2} + \frac {d x}{2} \right )}}{96 a^{6} d} + \frac {\tan ^{7}{\left (\frac {c}{2} + \frac {d x}{2} \right )}}{112 a^{6} d} + \frac {\tan ^{5}{\left (\frac {c}{2} + \frac {d x}{2} \right )}}{80 a^{6} d} - \frac {\tan ^{3}{\left (\frac {c}{2} + \frac {d x}{2} \right )}}{32 a^{6} d} + \frac {\tan {\left (\frac {c}{2} + \frac {d x}{2} \right )}}{32 a^{6} d} & \text {for}\: d \neq 0 \\\frac {x \cos ^{4}{\left (c \right )}}{\left (a \cos {\left (c \right )} + a\right )^{6}} & \text {otherwise} \end {cases} \]

[In]

integrate(cos(d*x+c)**4/(a+a*cos(d*x+c))**6,x)

[Out]

Piecewise((tan(c/2 + d*x/2)**11/(352*a**6*d) - tan(c/2 + d*x/2)**9/(96*a**6*d) + tan(c/2 + d*x/2)**7/(112*a**6
*d) + tan(c/2 + d*x/2)**5/(80*a**6*d) - tan(c/2 + d*x/2)**3/(32*a**6*d) + tan(c/2 + d*x/2)/(32*a**6*d), Ne(d,
0)), (x*cos(c)**4/(a*cos(c) + a)**6, True))

Maxima [A] (verification not implemented)

none

Time = 0.23 (sec) , antiderivative size = 127, normalized size of antiderivative = 0.72 \[ \int \frac {\cos ^4(c+d x)}{(a+a \cos (c+d x))^6} \, dx=\frac {\frac {1155 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac {1155 \, \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} + \frac {462 \, \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}} + \frac {330 \, \sin \left (d x + c\right )^{7}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{7}} - \frac {385 \, \sin \left (d x + c\right )^{9}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{9}} + \frac {105 \, \sin \left (d x + c\right )^{11}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{11}}}{36960 \, a^{6} d} \]

[In]

integrate(cos(d*x+c)^4/(a+a*cos(d*x+c))^6,x, algorithm="maxima")

[Out]

1/36960*(1155*sin(d*x + c)/(cos(d*x + c) + 1) - 1155*sin(d*x + c)^3/(cos(d*x + c) + 1)^3 + 462*sin(d*x + c)^5/
(cos(d*x + c) + 1)^5 + 330*sin(d*x + c)^7/(cos(d*x + c) + 1)^7 - 385*sin(d*x + c)^9/(cos(d*x + c) + 1)^9 + 105
*sin(d*x + c)^11/(cos(d*x + c) + 1)^11)/(a^6*d)

Giac [A] (verification not implemented)

none

Time = 0.41 (sec) , antiderivative size = 85, normalized size of antiderivative = 0.48 \[ \int \frac {\cos ^4(c+d x)}{(a+a \cos (c+d x))^6} \, dx=\frac {105 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{11} - 385 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{9} + 330 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} + 462 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 1155 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 1155 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{36960 \, a^{6} d} \]

[In]

integrate(cos(d*x+c)^4/(a+a*cos(d*x+c))^6,x, algorithm="giac")

[Out]

1/36960*(105*tan(1/2*d*x + 1/2*c)^11 - 385*tan(1/2*d*x + 1/2*c)^9 + 330*tan(1/2*d*x + 1/2*c)^7 + 462*tan(1/2*d
*x + 1/2*c)^5 - 1155*tan(1/2*d*x + 1/2*c)^3 + 1155*tan(1/2*d*x + 1/2*c))/(a^6*d)

Mupad [B] (verification not implemented)

Time = 14.79 (sec) , antiderivative size = 151, normalized size of antiderivative = 0.86 \[ \int \frac {\cos ^4(c+d x)}{(a+a \cos (c+d x))^6} \, dx=\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\left (1155\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{10}-1155\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^8\,{\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+462\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6\,{\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4+330\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4\,{\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6-385\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2\,{\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^8+105\,{\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{10}\right )}{36960\,a^6\,d\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{11}} \]

[In]

int(cos(c + d*x)^4/(a + a*cos(c + d*x))^6,x)

[Out]

(sin(c/2 + (d*x)/2)*(1155*cos(c/2 + (d*x)/2)^10 + 105*sin(c/2 + (d*x)/2)^10 - 385*cos(c/2 + (d*x)/2)^2*sin(c/2
 + (d*x)/2)^8 + 330*cos(c/2 + (d*x)/2)^4*sin(c/2 + (d*x)/2)^6 + 462*cos(c/2 + (d*x)/2)^6*sin(c/2 + (d*x)/2)^4
- 1155*cos(c/2 + (d*x)/2)^8*sin(c/2 + (d*x)/2)^2))/(36960*a^6*d*cos(c/2 + (d*x)/2)^11)